您的位置:易推广 > 电池 > 电源 > 电池 > 北京菲特斯科技有限公司 > 产品展示 > 松下蓄电池 > 理士LEOCH蓄电池DJ2000/2V2000AH船舶照明

产品展示

理士LEOCH蓄电池DJ2000/2V2000AH船舶照明

点击次数:12发布时间:2023/9/27 8:52:58

  理士LEOCH蓄电池DJ2000/2V2000AH船舶照明

更新日期:2023/9/27 8:52:58

所 在 地:

产品型号:

简单介绍:理士LEOCH蓄电池DJ2000/2V2000AH船舶照明理士在实践中不断开拓创新、努力进取。在品质控制上,成立有专业的质量管理中心,成功通过了ISO9001、TS16949、ISO14001、OHS

优质供应

详细内容

理士LEOCH蓄电池DJ2000/2V2000AH船舶照明

理士在实践中不断开拓创新、努力进取。在品质控制上,成立有专业的质量管理中心,成功通过了ISO9001、TS16949、ISO14001、OHSAS18001等一系列认证。在技术创新上,企业与国外较有名电池公司进行了多项技术协作,引进*设备和仪器,拥有多项国家技术,制造能力达到了较高水平。并与国内高校进行持续地技术交流合作,建立产学研基地,提高企业自主创新能力,为企业早日成为化的,有竞争力的蓄电池制造商,奠定了坚实的基础。

通信电源被称为通信系统的心脏,电源系统将直接影响通信系统的可靠性和稳定性。目前,通信系统电源供电大都是由不间断的蓄电池提供的,蓄电池温度过高势必影响到电池的工作效率和寿命。因此对蓄电池的工作温度进行实时的监测具有实际意义。美国APC公司的一项调查结果表明,大约有75%以上的通信系统故障都是由于电源设备故障而引起的。
议题内容:
理士蓄电池温度监测系统的系统组成
理士蓄电池温度监测系统的软硬件设计
解决方案:
电压、温湿度采集、温度采集
模块之间的通信
数据显示
1单片机选择
该系统单片机选用89S51,该单片机采用0.35新工艺。成本降低,功能提升,与传统的89C51单片机相比主要具有以下特点:
(1)功能增多,性能有了较大提升,价格基本不变;
(2)ISP在线编程功能;
(3)高工作频率为33MHz,计算速度更快;
(4)具有双工UART串行通道;
(5)内部集成看门狗计时器;
(6)双数据指示器;
(7)兼容性强,向下*兼容51全部子系列产品。
2温度传感器的选择及其与单片机的连接
温度采集选用DS18B20,DS18B20具有*的单总线接口方式,通过串行通信接口(I/O)直接输出被测温度值接口方式,CPU只需一根端口线就可与DS18820实现双向通信;在使用中不需要任何元件;内含寄生电源,既可采用寄生电源,也可由VDD直接供电;允许电压范围是3.0~5.5V,进行温度/数字转换时的工作电流约为1.5mA,待机电流仅为1μA,典型功耗为5mW;温度测量范围为-55~125℃,在0~85℃之间,误差小于0.5℃;支持多点组网功能,多个DS18B20可以挂接在一根总线上,可实现多点测温;具有负压特性,当电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。
DS18B20和单片机的连接如图2所示,由VCC直接供电,连接一个4.7kΩ左右的上拉电阻,DQ直接连到单片机的P1.0口上CPU对DS18B20的访问流程是:对DS18B20初始化即ROM操作命令、存储器(包括便笺式RAM和E2PROM)操作命令即数据处理。单总线上所有处理都从初始化开始,初始化时序由主机发出的复位脉冲和一个或多个从机发出的应答脉冲组成。主机接收到从机的应答脉冲后,说明有单总线器件在线,主机就可以开始对从机进行ROM命令和存储器操作命令,使DS18B20完成温度测量并将测量结果存人高速暂存储器中,然后读出此结果。
3交、直流电压以及机房温湿度的测量
直流电压、交流电压以及机房温湿度的测量选用TLC1543,TLC1543为10位11通道的A/D转换器,与单片机的连接如图3所示。机房环境测量(温度、湿度)采用JWS温湿度变送器,输出信号为标准0~5V直流电压信号;直流电压的数据采集经电阻分压后直接送至A/D转换器,交流电压的采集经分压整流后也直接送至A/D转换器。
4显示电路设计
温度显示采用6位LED,与单片机的连接如图4所示。显示模块由8279键盘、显示接口芯片和相应的驱动电路组成。8279的扫描线SLA~SLC在扫描过程中,可将芯片内部显示单元的内容送到输出数据线OA0~OA3和OB0~OB3扫描线经74HC138译码,作为多位LED数码管的位选线,通过74LS04反相后,再经过位驱动芯片,用于对不同的数码管进行位驱动。同时,用OA0~OA3和OB0~OB3送出的数据对应地驱动每个数码管的8个显示段,使6个数码管轮流驱动发光。驱动芯片采用SN75491和SN75492,分别驱动数码管的段和位显示,保证6位数码管都被点亮时需要的大电流。

产品特性

1. 寿命长。

2. 自放电率极低。

3. 容量充足。

4. 使用温度范围宽。

5. 密封性能好。

6. 导电性好。

7. 充电接受能力强。

8. 安全可靠的防爆排气系统。

应用领域

1. 多用途的

2. 不间断电源

3. 电子能源系统

4.紧急备用电源

5. 紧急灯

6. 铁路信号

7. 航空信号

8. 安防系统

9. 电子器械与装备

10.通话系统电源

11.直流电源

12.自动控制系统

 

产品规格表

电池型号

电压

(V)

额定容量 (AH)

外形尺寸 (mm)

端子形式

 

 

20HR

10HR

5HR

3HR

1HR

总高

 

DJ65

2

69.0

65.0

57.0

51.6

38.7

170±2

72±1

205±2

212±2

T6

DJ75

2

79.6

75.0

65.5

59.7

44.6

170±2

72±1

205±2

212±2

T6

DJ100

2

106

100

87.5

79.5

59.5

170±2

72±1

205±2

212±2

T6

DJ120

2

127

120

105

95.4

71.4

170±2

98±1

205±2

212±2

T7

DJ130

2

138

130

114

104

77.4

170±2

98±1

205±2

212±2

T7

DJ150

2

159

150

132

119

89.3

170±2

98±1

205±2

212±2

T7

DJ200

2

212

200

175

159

119

170±2

110±2

328±3

350±3

T11

DJ250

2

266

250

219

199

149

170±2

110±2

328±3

350±3

T11

DJ300

2

318

300

263

239

179

170±2

150±2

328±3

350±3

T11

DJ350

2

372

350

307

278

208

170±2

150±2

328±3

350±3

T11

DJ400

2

424

400

350

318

238

210±2

175±2

330±3

350±3

T11

DJ450

2

478

450

394

357

268

210±2

175±2

330±3

350±3

T11

DJ500

2

530

500

438

399

298

240±2

175±2

330±3

350±3

T11

DJ600

2

636

600

525

477

357

300±2

175±2

330±3

350±3

T11

DJ700

2

742

700

615

558

417

300±2

175±2

330±3

350±3

T11

DJ800

2

848

800

700

636

476

410±3

175±2

330±3

351±3

T11

DJ1000

2

1060

1000

875

795

595

475±3

175±2

328±3

350±3

T11

DJ1200

2

1272

1200

1050

954

714

475±3

175±2

328±3

350±3

T11

DJ1500

2

1590

1500

1315

1194

893

403±3

354±3

339±3

349±3

T11

DJ2000

2

2120

2000

1750

1590

1190

490±3

350±3

339±3

349±3

T11

DJ2500

2

2660

2500

2190

1989

1488

490±3

350±3

339±3

349±3

T11

DJ3000

2

3180

3000

2625

2385

1785

709±3

350±3

337±3

349±3

T11

 

理士LEOCH蓄电池DJ2000/2V2000AH船舶照明

*个原因:理士蓄电池本身引起的
那么我们知道了铅酸电池的工作原理,铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免硫化。
第二个原因:电池生产的原因
针对电动自行车用铅酸蓄电池的特殊性,各个电池制造商采取了多种方法。典型的方法如下:
①增加极板数量。
把原设计的单格5片6片制改为6片7片制,7片8片制,甚至8片9片制。靠减薄极板厚度和隔板,增加极板数量来提高电池容量。
②提高电池的硫酸比重。
原来浮充电池的硫酸比重一般都在1.21~1.28之间,而电动自行车的电池的硫酸比重一般都在1.36~1.38左右,这样可以提供较大的电流,提升电池的初期容量。
③增加正极板活性物质氧化铅的用量和比例。
增加氧化铅就增加了参与放电的电化学反应物质,也就增加了放电时间,增加了电池容量。
通过这些措施,电池的初期容量满足了电动自行车的容量要求,特别是改善了电池的大电流放电的特性。但是,极板增加了,硫酸的容量就减少了,电池发热导致大量失水,同时,电池的微短路和铅枝搭桥的概率增加了。提高硫酸比重增加了电池的初期容量,但是,硫化现象就更严重。密封电池的基本原理就是正极板析氧以后,氧气直接到负极板,被负极板吸收而还原为水,考核电池这个技术指标的参数叫做“密封反应效率”,这种现象叫做“氧循环”。这样,电池的失水很少,实现了“免维护”,就是免加水。为此,都要求负极板容量做的比正极板容量大一些,又称为负极过渡。增加正极板活性物质必然使得,负极过渡减少了,氧循环变差了,失水增加了,又会造成硫化。这些措施虽然提升了电池的初期容量,但是却会造成失水和硫化,而失水和硫化又会相互促成,终结果却是牺牲电池的寿命。
④还有就是极群组装虚焊问题。
容易产生虚焊的地方是极板。而每个电池的单格有15片极板,就是15个焊点,一个电池有6个单格,就有90个焊点,一组电池由3个12V电池组成,就有270个焊点。如果一个焊点存在虚焊,该单格容量就下降,进而该单格形成电池落后,造成整个电池都落后,电池就会形成严重的不均衡,使这组电池提前失效。就算虚焊控制在万分,平均每37组电池就会有一组电池存在虚焊,这是不能够允许的。而铅钙合金板栅的电池,在焊接的时候会析出钙而掩盖虚焊问题,这样,很多电池制造商宁愿采用低锑合金的板栅而没有采用铅钙合金。而低锑合金的板栅析氧析氢电压更低,电池出气量大,失水相对严重,电池更容易硫化。
从以上我们可以看出:为什么电池有好有坏,有的厂家生长的电池相同使用条件下寿命会更长。
第三个原因:电动车使用环境本身引起的原因
只要是铅蓄电池,在使用的过程中都会硫化,但其它领域的铅酸电池却比电动自行车上使用的铅酸电池有着更长的寿命,这是因为电动自行车的铅酸电池有着一个更容易硫化的工作环境。
①深度放电
用在汽车上的铅蓄电池只是在点火时单向放电,点火后发电机会对电池自动充电,不造成电池深度放电。而电动自行车在骑行时不可能充电,经常会超过60%的深度放电,深放电时,硫酸铅浓度增加,硫化就会相当严重。
②大电流放电
电动车20公里巡航电流一般是4A,这个值已经高于其它领域的电池工作电流,而超速超载的电动车的工作电流就更大。电池制造商都进行过1C充电70%,2C放电60%的循环寿命试验。经过这样的寿命试验,可达到充放电循环350次寿命的电池很多,但是实际在用的效果就相差甚远了。这是因为大电流工作增加了50%的放电深度,电池会加速硫化。所以,电动摩托车的电池寿命更短,因为电动摩托车的车身太重,电机功率大,在巡航时工作电流达8A以上。有的甚到达到10A.
③充放电频率高
用在后备供电领域的电池,只有在停电时才会放电,如果一年停8次电,要达到10年的寿命,只用做到80次循环充电寿命,而电动车一年充放电循环300次以上很常见。甚到有的人可能一天充好几次 ,充的时间很短,没有充饱就使用了。
④短时充电
由于电动自行车是交通工具,可充电的时间不多,要在8小时内完成36伏或48伏的20安时充电,这就必须提高充电电压(一般为单节2.7~2.9伏),当充电电压超过单节电池的析氧电压(2.35伏)或析氢电压(2.42伏)时,电池就会因过度析氧而开阀排气,造成失水,使电解液浓度增加,电池的硫化现象加重。
⑤放电后不能及时充电
作为交通工具,电动自行车的充电及放电被*分离开来,放电后很难有条件及时充电,而放电后形成的大量硫酸铅如果超过半小时不充电还原为氧化铅,就会硫化结晶。
第四个原因:电动自行车生产方面的原因
大多数车的控制器都留了一个限速插头,一些车厂干脆就去掉限速器出厂,既可以吸引看重车速的客户,也能降低成本,这样的车在高速行驶时电流非常大,会严重缩短电池寿命。
12V铅酸电池的低保护电压为10.5V,如果是36V电池组,低保留电压就是31.5V,目前大多数车厂采用的控制器欠压保护电压也都是31.5V。表面上看这是正确的,但是,实际当36V电池组只剩下31.5V电压时,由于电池存在容量差,肯定就会有一个电池电压低于10.5V,该电池就处于过放电状态。这时候,过放电的电池容量急剧下降,这时对电池的损伤影响不仅仅是该单只电池,而是影响整组电池的寿命。其实,在电池电压低于32V以后一直到27V,所增加的续行能力不到2公里,而对电池的损伤却非常大。只要出现这样的情况10次,电池的容量就会低于标称容量的70%。另外,一些用户发现电池在欠压以后,过10分钟,电池又不欠压了,就又采取给电行驶,这对电池破坏更大,而大多数车的说明书没有给用户以警示。目前多数控制器内部都有可调的电位器,而这个可调的电位器的振动漂移是比较严重的。在价格竞争中,面对更注重车外表的用户群,很少有产品采用抗振动的精密多圈电位器,这样的控制器发生振动后漂移也不奇怪。
第五个原因:充电设备的原因
业界广为流传的一句话就是:电池不是用坏的,而是充坏的。为了满足电动自行车电池的短时高容量充电,在三段式恒压限流充电中,不得不通过提高恒压值到2.47V~2.49V。这样,大大超过电池正极板析氧电压和负极板析氢电压。一些充电器制造商的产品为了降低充电时间的指示,提高了恒压转浮充的电流,而使得充电指示充满电以后,还没有充满电,就靠提高浮充电压来弥补。这样,很多充电器的浮充电压超过单格电压2.35V,这样在浮充阶段还在大量析氧。而电池的氧循环又不好,这样在浮充阶段也在不断的排气。恒压值高了,保证了充电时间,但是牺牲的是失水和硫化。恒压值低了,充电时间和充入电量又难以保证。在改善电池的电池板栅合金、提高析气电位、改善氧循环性能,提高密封反应效率的基础上,控制充电高充电电压在2.42V以下,也就是在析氢电位以下。这样做必然会导致充电时间的延长,这就必须在大电流充电(限流充电)的状态下,加入去极化的负脉冲,改善电池的充电接受能力,在大电流充电的时候多充入一些电量,缩短充电时间。70%的2C电流充电,是电池在充电接受能力比较大的时候,对电池采用大电流充电,对电池的损伤比较小。电池基本上没有高于严重析氢电压。一旦高于析氢电压,电池也会快速的失水。使用这类充电器,必须采用连续充放电,如果中途停止几天充电,电池就会产生比较严重的硫化而提前失效。而用户使用电池,是无法保证每次使用以后,都能够及时充电的,一年以内发生数次没有及时充电的情况,电池的硫化就会积累。一些充电器制造商把某些功能夸大,成品的功效其实没有其宣传的那样好。
其它原因
不少电池在单体测试中,可以获得比较好的结果,但是,对于串连电池组来说,由于容量、开路电压、荷电状态、硫化程度各不相同,这个差异会在串连电池组被扩大,状态差的单体会影响整组电池,其寿命明显下降。
从电池在生产线上充电,到用户购车后配车使用这段时间要经过很多环节,间隔时间甚至会长达数月,在这期间,由于没对电池进行补充电,自放电产生的硫酸铅大量堆积结晶,用户刚买到的新电池可能是已经老化甚至报费的电池。
电池厂家在执行质保时,对回收电池并不是*的淘汰。电池返退以后,电池制造商重新进行充放电检验,在检验中往往会发现有60%以上的单体电池是不符合返退条件的电池。其原因也就是在串连电池组中,个别的电池落后形成整组电池功能下降而引起整组返退。不少电池制造商对返退电池采取配组、补水、除硫、包装后,又重新提供给用户,以提高电池的有效使用寿命,降低报废率,减少电池制造商的部分理索赔的损失,所以,很多经销商已经感觉到厂家提供的电池明显“一代不如一代”,所以在电池选择时应擦亮眼睛,选择如旭派电池这样,品质及口碑都很好的电池。

 

联系我们

联系人:杨杰

点击查看联系方式

企业档案

  • 会员类型:免费会员
  • 工商认证: 【未认证】
  • 最后认证时间:
  • 法人:
  • 注册号:
  • 企业类型:经销商
  • 注册资金:人民币万

script>
在线咨询

提交