(深圳市太科建筑检测鉴定有限公司)是一家经深圳市工商行政管理批准成立、通过了广东省监督组织的计量认证/审查、已经取得广东省建设厅颁发的建筑工程质量专项检测资质的从事建筑工程质量检测、鉴定、评价的。
公司业务范围:浙江省,安徽省,江西省,天津,上海,北京,河北省,江苏省,山东省,内蒙古,重庆,湖南省,湖北省,四川省,宁夏,福建省,广西省,广东省,深圳,陕西省,青海,甘肃,云南省,辽宁省,海南省,吉林省,黑龙江,西藏。公司承接:厂房结构安全性检测、厂房验厂检测、厂房承载力检测、危房鉴定、旧房屋安全检测、酒店宾馆房屋检测、建筑检测质量检测、钢结构工程检测、、钢结构厂房检测鉴定、民房安全检测、幼儿园安全检测、房屋租赁检测、光伏荷载检测、烟囱结构安全检测、学校抗震鉴定、广告牌安全检测、房屋安全检测鉴定各种检测业务等。深圳市太科建筑检测鉴定有限公司,资质齐全,办理业务,!收费标准比业价格低,。欢迎新老顾客来电咨询!我们竭诚为您服务!
建筑物经过时期的使用之后, 也会出现墙体开裂、楼板开裂、钢筋锈蚀等“病症”, 也需要“建筑结构医生”对它进行结构检测与鉴定, 了解它的健康状况, 并对它进行改造。建筑物诊治需要运用到检测鉴定, 是一个难度大、决策过程复杂的系统工程, 集材料科学、物理科学、工程力学、结构工程学、施工等多学科于一体。和老一样, 结构医生对建筑物进行检测鉴定的过程也分为“望、闻、问、切、诊”五个步骤。公司秉承“精诚团结、勤奋自律、高效优质”的宗旨服务社会。公司力量雄厚,结构合理;拥有一批德才兼备的长期从事建筑设计、建筑施工、房屋结构安全鉴定、质量检测和结构加固等的高、中级职称人才,他们对房屋结构安全鉴定、质量检测和结构加固等具有丰富的经验,能胜任各类房屋安全鉴定工作。公司采用国内外的检测仪器和设备,依据现行标准为广大客户提供优质服务,并遵照广东省建设厅颁发的相关文件为“五无”工程做结构安全检测和鉴定。同时,我公司还专门为市、区级、市仲裁会承担民事诉讼中的房屋安全鉴定工作。
一、房屋承重检测——以混凝土结构为例,检测鉴定内容如下:
一、混凝土结构房屋建筑现场的资料核查和状况检查,应包括下列内容:
1 结构体系与结构布置、结构高度、层数和层高、楼梯间位置、楼屋盖形式;
2 结构构件尺寸、结构整体性连接构造措施,填充墙与结构构件的连接构造措施;
3 结构构件缺陷、变形与损伤。
4、混凝土结构房屋建筑现场检查的重点,应包括结构体系与结构布置的合理性,影响建筑结构整体性能的关键部位,易导致部倒塌或坠落伤人的构件。
二、混凝土结构安全评估
混凝土结构房屋建筑的结构体系与结构布置宜按下列规定检查:
1 主要结构构件和填充墙的平面布置宜对称或基本对称,结构构件的竖向布置宜上下连续,构件中线宜重合;
2 不同结构形式的混凝土结构房屋分别符合下列要求:
1)框架结构非单跨或单向框架,装配式框架节点为整浇;
2)框架-抗震墙结构的抗震墙宜双向设置,房屋建筑较长时,纵向抗震墙不应设置在端开间;
3)抗震墙结构中较长的抗震墙宜分成较均匀的若干墙段,较大洞口位置上下基本
对齐;
4)底部框支结构的落地抗震墙间距不大于四开间和24m的较小值。
四、混凝土结构房屋建筑的整体牢固性构造措施应从下列方面进行检查:
1 框架柱与填充墙的拉结构造措施;
2 构件截面尺寸;
3 楼板种类与拉接。
二、房屋承重检测——结构分析;
荷载和荷载组合结构承受的主要荷载有:
1)自重;2)风荷载;3)温度荷载;4)检修活载。荷载组合有三类:
1)基本组合;
2)殊组合;
3)施工吊装。
应力分析由于钢立柱受力较复杂,主要承受弯矩和轴向压力,受周围地貌影响和风振作用,在阵风作用下可能有扭转产生,主要为压弯构件,同时要考虑可能出现的扭矩,其承载力取决于柱的长细比、支承条件、截面尺寸以及作用于柱上的荷载等,计算表明,钢立柱的承载力一般由稳定控制。上部结构的悬臂桁架在铅垂面可简化为刚结直在钢立柱上的悬臂结构,在水平面内由弦杆和支撑铰结形成平面不变体系。内力计算采用软件在计算机上完成。
根据钢结构设计理论,对接焊缝在截面不减小的情况下,其强度可达到母材的强度,因而无需验算焊缝应力,但应严格检查焊缝质量及饱满度。上部桁架杆件间的连接主要是角焊缝。焊缝承受杆件间的应力传递,其受力大小已由上部结构计算得出,对牌之类结构,上部结构杆件受力一般不大,为施焊方便,可用围焊,并取焊脚尺寸为hf=8ram,可满足规范要求;但对牌面板骨架与主骨架挂点处焊接须逐一核算。
三、房屋承重检测——既有混凝土构件中混凝土性能
混凝土碳化是介质与混凝土相互作用的结果,*典型的是大气中二氧化碳气体对混凝土的作用。在工业区, 其它酸性气体如二氧化硫、硫化氢等也会引起混凝土的“ 碳化” 中性化。混凝土碳化将引起一系列问题, 为此, 文献对混凝土碳化问题进行了研究和评述。在实际工程实践中, 实测混凝土碳化深度的手段较为单一, 不同操作人员的测量方法、测点数量的控制并不完全一致, 加之, 混凝土碳化区分为完全碳化区和部分碳化区, 且目前检测混凝土部分碳化区缺少必要的手段和仪器设备, 故此, 就其他因素的影响不谈, 混凝土碳化深度本身的实测值就存在随机
性和不确定性, 这对于混凝土碳化深度的理论研究和检测手段的发展都提出了新的问题。目前, 混凝土碳化深度的预测模型有多种形式,归纳起来主要有三种类型种基于扩散定律, 导出的混凝土碳化深度预测理论模型及相应的变化模型第二种为混凝土碳化深度预测的随机模型第三种为混凝土碳化深度预测的网络模型。由于影响混凝土碳化的因素多, 各类预测模型均具有不同的点, 对同一对象其预测精度有所差别。作者认为建立适合本地区的混凝土碳化深度专用预测模型更具有现实意义。混凝土实际碳化深度将对混凝土构件性能产生两种影响一是影响混凝土对钢筋锈蚀的保护作用,二是影响混凝土自身的力学性。
一个问题将影响到钢筋初始锈蚀间题, 即影响预测钢筋力学性能发生改变的第二个问题将会影响混凝土结构或构件的力学行为。对既有混凝土强度进行检测有两个问题需要考虑一是混凝土强度设计等级及混凝土的实际强度等级, 在实际工程中, 混凝土实际强度等级与设计强度等级有出入, 不论实际强度等级高于设计强度等级多少, 结构承载力计算时设计人员一般均按设计强度等级取用
二是检测时混凝土的实际强度, 混凝土实际强度是混凝土后期强度增长的结果, 还是施工时混凝土强度本身就高的结果, 应该进行区别, 这对结构构件工作性的评价是有所差别的。由于检测、所用规范的差别, 区分上述两种情况的差异是非常困难的, 在工程实践中设计人员只关心目前混凝土的强度实际评定值, 而对于产生此结果的原因并不关心, 问题是相同强度等级的碳化混凝土和非碳化混凝土其力学行为并不相同。
尽管混凝土强度现场检测的方法很多, 但工程检测人员更偏爱使用回弹法与钻芯法检测混凝土的实际强度, 从国内学者和作者所做实际工程的检测及试验研究对比数据分析来看严格按回弹法、钻芯法检测规程进行的试验, 所获得的试验数据其对比性较强。作者认为采用回弹法检测混凝土强度取构件测区*小值作为混凝土强度评定结果在工程安全条件下是可行的。当然, 不论用回弹法检测还是用钻芯法检测混凝土强度, 其检测结果受多种影响因素制约, 所以完整地反映各种条件下的既有混凝土结构的混凝土抗压强度仍需进行大量的研究工作。除了对既有混凝土结构混凝土抗压强度需要试验研究外, 还需对既有混凝土结构构件中的碳化混凝土应力一应变关系进行研究受多方面的限制, 该部分的研究成果非常有限, 同时也缺乏碳化混凝土抗拉强度试验数据在今后的研究工作中应逐步完善上述研究工作。