企业档案
- 会员类型:免费会员
- 工商认证: 【未认证】
- 最后认证时间:
- 法人:
- 注册号:****
- 企业类型:经销商
- 注册资金:人民币**万
ELISA检测试剂盒
- 兔ELISA试剂盒
- 其它动物ELISA试剂盒
- 植物ELISA试剂盒
- 鸭ELISA试剂盒
- 鸡ELISA试剂盒
- 猪ELISA试剂盒
- 豚鼠ELISA试剂盒
- 仓鼠ELISA试剂盒
- 裸鼠ELISA试剂盒
- 小鼠ELISA试剂盒
- 大鼠ELISA试剂盒
- 人ELISA试剂盒
标准品
对照品
金标检测试剂盒
ELISA试剂盒
生化检测试剂盒
培养基
- 其它细菌检测培养基
- 分子生物学试验用培养基
- 抗生素检验、药敏试验用培养基
- 淋病奈瑟菌培养基
- 分枝杆菌培养基
- 结核杆菌培养基
- 炭疽杆菌培养基
- 鼠疫杆菌培养基
- 支原体培养基
- 军团菌培养基
- 放线菌培养基
- 芽孢杆菌(包括蜡样芽胞杆菌)培养基
- 厌氧菌培养基
- 乳酸菌、双歧杆菌培养基
- 弯曲杆菌(包括空肠弯曲杆菌)培养基
- 梭状芽胞杆菌(包括产气荚膜梭菌、肉毒梭菌)培养基
- 真菌(包括霉菌、酵母菌)培养基
- 嗜水气单胞菌培养基
- 肠球菌、链球菌培养基
- 小肠结肠炎耶尔森氏菌培养基
- 弧菌(包括副溶血性弧菌、霍乱弧菌)培养基
- 葡萄球菌(包括金黄色葡萄球菌)培养基
- 李斯特氏菌培养基
- 绿脓杆菌培养基
- 沙门氏菌、志贺氏菌培养基
- 阪崎肠杆菌培养基
- 大肠埃希氏菌 O157培养基
- 大肠杆菌、大肠菌群、粪大肠菌群培养基
- 细菌总数测定培养基
- 细菌增菌、培养培养基
- 运送培养基
- 样品制备培养基
- 显色培养基
- 植物组织培养基
- 疫苗培养基
- 型植物培养基
- 无酚红培养基
- 无动物相关成分培养基
- 无血清培养基
- 低血清培养基
菌株
动物细胞株
细胞株
人细胞
- 脐带细胞系统细胞
- 间充质干细胞系统细胞
- 前列腺细胞系统细胞
- 毛发细胞系统细胞
- 口腔细胞系统细胞
- 骨骼肌细胞
- 骨细胞
- 淋巴细胞系统细胞
- 生殖细胞系统细胞
- 尿道细胞系统细胞
- 视觉细胞系统细胞
- 脂肪细胞系统细胞
- 真皮细胞系统细胞
- 胃肠细胞系统细胞
- 肾脏细胞系统细胞
- 肝细胞系统细胞
- 肺细胞系统细胞
- 心脏细胞系统细胞
- 外周神经系统细胞
- 中枢神经系统细胞
细胞类
植物提取标准物质
Amresco类生化试剂
原装进口检测试剂盒
- 人促生长激素释放激素检测试剂盒
- 小鼠三碘甲状腺原氨酸检测试剂盒
- 大鼠高迁移率族蛋白B1检测试剂盒
- 豚鼠免疫球蛋白G检测试剂盒
- 猪流感病毒A检测试剂盒
- 鸡乙酰乙酸检测检测试剂盒
- 兔子纤溶酶原检测试剂盒
- 动物检测试剂盒
- 植物检测试剂盒
血管内皮细胞粘附分子抗体
联系我们
联系人:徐经理
公司动态
干细胞领域权威发表iPS里程碑式新成果
怀特黑德研究所和麻省理工学院科研小组开发了一种新型遗传标记物,可以有效提高诱导多能干细胞(iPSCs)恢复大不成熟的胚胎状态的效率,利用这一技术,人们可以预测哪些细胞能成功标称多能干细胞,这篇题为“Single-cell gene expression analyses of cellular reprogramming reveal a stochastic early and hierarchic late phase”论文发表在Cell杂志上。
几年前,生物学家们发现常规的体细胞可以重新编程成为具备生成所有其他类型细胞能力的多能干细胞。这样的细胞大有希望用于治疗许多的人类疾病。
这些诱导多能干细胞(iPSCs)通常是通过遗传修饰细胞过表达四种基因使得它们恢复到不成熟的胚胎状态而生成。但这一程序只能在一小部分细胞中起作用。
现在,来自怀特黑德研究所和麻省理工学院的研究人员确定了新的遗传标记物,有可能帮助使这一过程更有效率,科学家们能够预测哪些处理细胞将成功地转变为多能干细胞。
新的研究论文在线发布在9月13日的《细胞》(Cell)杂志上。根据研究人员所说,该研究还确定了生成iPSCs的重编程因子新组合。
领导这一研究的是干细胞研究领域的权威人物Rudolf Jaenisch,Jaenisch是怀特黑德研究所的创始人,曾经担任过干细胞学会的主席。其在一系列的领域做出了有影响的工作,包括基因敲除小鼠、表观遗传学研究、核移植、iPS等,解决了这些领域几乎所有的重要问题。论文的另一位主要作者是怀特黑德研究所博士后Yosef Buganim。
新研究次检测了在细胞转变为多能状态过程中单个细胞的遗传改变。以往的研究是在大群细胞中观测基因表达改变,而并非所有实际上重编程的细胞,使得难于找出参与这一过程的基因。
“在以往的研究中,你无法检测表达预测性多能标记物的少数细胞。这一研究真正酷的地方在于你能早期检测两个或三个表达这些重要基因的细胞,这是以前从未做到过的,”论文的主要作者、Jaenisch实验室的研究生Dina Faddah说。
单细胞分析
2007年,科学家们发现通过过表达Oct4、Sox2、c-Myc和Klf4四种基因成体干细胞可以被重新编程。然而在这些基因过表达的细胞群中只有约0.1-1%的细胞转变为多能干细胞。
研究小组在*终变为多能干细胞的细胞中确定了四个很早(在重编程基因传递约6天后)就开启的基因Esrrb, Utf1, Lin28 和Dppa2,它们控制了参与多能性的其他基因的转录。
研究人员还发现一些从前提出的多能性标志物在仅部分编程的细胞中处于活性状态,表明这些标记物将是无用的。利用新发现的标志物,“你可以消除并没有完全重编程的所有克隆,你不会想将部分重编程的iPSCs用于患者特异性治疗,”Buganim说。
为了非常准确地读取细胞遗传图谱,研究人员利用称作Fluidigm(相关网页链接)的微流体系统筛查了基因,然后用可检测单链mRNA的荧光成像技术证实了他们的结果。
不完全随机
这些研究结果还使得研究人员开发了一种基因相互作用的新模式可操控细胞朝着多能性转变。以前,人们一直认为重编程是一种随机的过程,也就是说一旦四个重编程基因过表达,它们是否激活正确的基因使得一个特异细胞具有多能性是一个机会问题。
然而,新研究表明只有这一过程的*早阶段是随机的。一旦这些偶然事件唤醒细胞自身Sox2基因静息拷贝,基因就启动了一个决定性的信号通路导致多能性。
在早期、随机阶段,有可能有许多方式可以激活Sox2,Buganim说:“不同的细胞以不同的方式激活Sox2。只有你有一个特异组合允许Sox2激活,你就处在了朝着完全重编程的道路上。”
新模式还预测了可以激活Sox2的因子的6种组合。研究人员在重编程细胞中测试了这些组合,发现它们是成功的,且具有不同的效率。
有趣的是,他们发现组合并不包含任何原始的重编程因子。研究人员现正在检测他们的新组合看看它们是否能生成更健康的iPSCs。*严格的测试包括将iPSCs注入到不能生成正常细胞的胚胎,这一胚胎具有4套而非2套染色体。如果从这些细胞形成了健康的动物,其完全是iPSCs的产物,则表明这些iPSCs与胚胎干细胞相当。大部分iPSCs注入胚胎都没有通过这一检测。
在新研究中,Jaenisch小组重编程了小鼠胚胎成纤维细胞并在整个过程的几个时间点检测了已知或怀疑与多能性有关的48种基因的表达。这使得他们能够比较成为以及未成为多能干细胞的细胞以及只有部分重编程的细胞之间的基因表达图谱。
重编程的过程需要32-94天时间,一旦重编程完成,研究人员便在*终成为多能干细胞的细胞中检测了表达的基因。