企业档案
会员类型:初级版会员
已获得易推广信誉 等级评定
(0 -40)基础信誉积累,可浏览访问
(41-90)良好信誉积累,可接洽商谈
(91+ )优质信誉积累,可持续信赖
易推广初级版会员:6年
最后认证时间:
注册号: 【已认证】
法人代表: 【已认证】
企业类型:经销商 【已认证】
注册资金:人民币万 【已认证】
产品数:732
参观次数:1131070
X射线分析仪 XRD
X荧光光谱仪
- 赛默飞X荧光光谱仪 XRF
- 斯派克X荧光光谱仪
- 奥林巴斯X荧光光谱仪
- Horiba掘场X荧光光谱仪XRF
- 日本电子X荧光光谱仪 XRF
- 岛津X荧光光谱仪 XRF
- 日立X荧光光谱仪
- 帕纳科X荧光光谱仪XRF
- 理学X荧光光谱仪
- 布鲁克X荧光光谱仪XRF
XPS-X射线光电子能谱仪
液质联用仪LC-MS
气质联用仪GC-MS
等离子体质谱ICP-MS
原子吸收光谱仪AAS
等离子体光谱ICP-AES/OES
近红外光谱NIR
红外显微镜
动态热机械分析仪DMA
热重分析仪(热天平)
热分析联用仪
样品前处理
离子色谱仪IC
顶空进样器
赛默飞无机质谱仪
同步热分析仪STA
赛默飞水质分析仪
差示扫描量热仪DSC
荧光分光光度计
气相色谱仪GC
红外光谱仪(IR、傅里叶)
液相色谱仪LC
紫外分光光度计UV(可见)
辐射仪、射线检测仪
粘度计
挤出机
流变仪
拉曼光谱
日立仪器
其他
技术文章
电感耦合等离子体串联质谱仪测定超纯水中的超痕量钙
点击次数:27 发布时间:2022/7/27 21:12:05
Agilent 8800 电感耦合等离子体串联质谱仪 (ICP-MS/MS)采用新型反应池技术,对于 Ca 的分析可得到 100 ppq 的背景等效浓度 (BEC)。本文描述了采用 Agilent 8800 ICPMS/MS 分析超纯水中亚 ppt 水平 Ca 的原理和操作。
实验部分仪器实验采用一个标准的 Agilent 8800 电感耦合等离子体串联质谱仪主机(#200 半导体版选项)。样品引入系统由一个石英炬管和雾化室,以及一个 PFA 同心雾化器(自吸模式)组成。铂锥接口。实验全程使用冷等离子体条件,等离子体参数见表 1。
由图 1 可见,与常规 ICP-QMS 相比,8800 型另有一个主四杆质量过滤器 (Q1),置于八杆反应系统 (ORS3) 池和四杆质量过滤器 (Q2) 的面。Agilent 8800 ICP-MS/MS 可在两种扫描模式下运行:单四杆模式和 MS/MS 模式。单四杆模式模拟 ICP-QMS: Q1 是固定的,运行时仅作为一套离子导杆。
MS/MS 模式是 ICP-MS/MS 特有的:Q1 运行时相当于一个 ∆m 1 amu 的质量过滤器,可以选择进入池内的离子。由于 Q1 可以去除等离子体中的离子,大大提高了目标离子在碰撞反应池内的传输效率。当池内通入反应气时,反应效率也显著提高,实现了较低反应气流速即可有效消除干扰的可能,同时也时提高了离子传递效率,进而提高了灵敏度。校准溶液将超纯水 (UPW) 用高纯 HNO3 酸化(制成 0.1% 的稀硝酸),用以制备 Ca 标准溶液。用它向高纯 HNO3 酸化(0.1%) 的 UPW 空白中添加以 UPW 酸化后制成的 0.1% 稀硝酸打底,标准加入法配置 Ca 标准系列,加标浓度分别为1,50,100 ppt。
结果样品用 HNO3 酸化,制备成浓度为 0.1% HNO3。图 2 显示了采用标准加入法 (MSA) 分析 Ca 时获得的 BEC,使用了三种不同的模式进行测定:无池气体的单四杆模式、无池气体的 MS/MS 模式,以及采用流速 1 mL/min H2 作为池气体的 MS/MS 模式。第yi种测定模式模拟 Agilent 7700 单四杆 ICP-MS (ICP-QMS) 在冷等离子体模式下的运行。获得的 6.8 ppt BEC 与日常使用 Agilent7700 获得的结果相似。使用 MS/MS 模式(无池气体)可改善 BEC 至 1.4 ppt。使用流速 1 mL/min H2 作为池气体的 MS/MS 模式可进一步降低 BEC 至 0.041 ppt (41 ppq)。所得 MSA 曲线见图 3。使用 Agilent 8800 检测超纯水中的 Ca,获得的 BEC 比使用常规 ICP-QMS 获得的结果低两个数量。
讨论图 4 显示了采用冷等离子体模式并在单四杆模式(无池气体)下分析 UPW 得到的谱图。如 图 所 示 , A r + 在 低 温 等 离 子 体 条 件 下 被 抑 制 , 在m/z = 19 和 30 处可以观察到两个强峰。它们分别是(H2O)H+ 和 NO+。在单四杆模式下,包括这两个强峰离子在内的等离子体中形成的所有离子都进入反应池。但即使池内未通入气体,在池内也会有意料之外的反应发生,并在 m/z = 40 处产生一个新的干扰。这很可能是由于以下反应导致:NO+ + Ar → Ar+ + NO(电荷转移反应)该反应将在检测 Ca 时使 BEC 提高几个 ppt。虽然 NO 的电离能 (IP) (IP = 9.26 eV) 低于 Ar 的电离能 (IP = 15.7 eV),但亚稳态 NO+ 离子的电离能与 Ar 的接近 [2]。因此池内发生电荷转移反应的假设是合理的。而在 MS/MS 模式下,Q1 滤掉了所有非目标离子,如 NO+ 和 (H2O)H+,可以有效防止反应池中多余的反应发生,从而降低了 BEC。反应池中通入 H2 也可去除任何残留的、即使在冷等离子体条件下也可能形成的 40Ar+。
结论在冷等离子体下,等离子体产生的主要的多原子离子 NO+,可通过电荷转移反应在反应池中产生少量的 Ar +,在m/z = 40 处干扰 Ca 的测定。Agilent 8800 ICP-MS/MS在特有的 MS/MS 模式下运行,可以阻止等离子体产生的离子进入反应池,防止多余的反应发生。这可以使Agilent 8800 ICP-MS/MS 在检测超纯水中的 Ca 时实现41 ppq 的 BEC。
原创作者:上海斯迈欧分析仪器有限公司