您的位置:易推广 > 安防监控 > 智能交通 > 智能停车场管理 > 济南市历城区冠宇门业经营部 > 产品展示 > 车牌识别系统 > 潍坊昌乐县车牌识别 昌乐县起落杆系统

产品展示

潍坊昌乐县车牌识别 昌乐县起落杆系统

点击次数:18发布时间:2018/8/30 15:31:20

潍坊昌乐县车牌识别 昌乐县起落杆系统

更新日期:2018/8/30 15:31:20

所 在 地:中国大陆

产品型号:GY-03

简单介绍:车牌识别系统(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目前*新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。

优质供应

详细内容

 潍坊昌乐县车牌识别 昌乐县起落杆系统
产品简介

潍坊昌乐县车牌识别系统(Vehicle License Plate RecognitionVLPR) 是指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英文字母阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通系统中的重要组成部分,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红灯电子警察、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。

汽车牌照号码是车辆的身份标识,牌照自动识别技术可以在汽车不作任何改动的情况下实现汽车身份的自动登记及验证,这项技术已经应用于公路收费、停车管理、称重系统、交通诱导、交通管理、公路稽查、车辆调度、车辆检测等各种场合。
应用领域

车牌识别(起落杆系统)在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。

在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。在深圳市公安局建设的《停车库(场)车辆图像和号牌信息采集与传输系统技术要求》中,车牌识别技术成为车辆身份识别的主要手段。

车牌识别技术结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的快速通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。

以下列举了几种应用方式:

——监测报警

对于纳入黑名单的车辆,例如:被通缉挂失的车辆、欠交费车辆、未年检车辆、肇事逃逸违章车辆等,只需将其车牌号码输入到应用系统中,车牌识别设备安装于指定的路口、卡口或由管理人员随时携带按需要放置,系统将识读所有通过车辆的牌照号码并与系统中的黑名单比对,一旦发现指定车辆立刻发出报警信息。系统可以全天不间断工作、不会疲劳、错误率极低;可以适应高速行驶的车辆;可以在车辆行使过程中完成任务不影响正常交通;整个监视过程中司机也不会觉察、保密性高。应用这种系统将极大地提高管理效率。

——超速违章处罚

潍坊昌乐县车牌识别技术结合测速设备可以用于车辆超速违章处罚,一般用于高速公路。具体应用是:在路上设置测速监测点,抓拍超速的车辆并识别车牌号码,将违章车辆的牌照号码及图片发往各出口;在各出口设置处罚点,用车牌识别设备识别通过车辆并将号码与已经收到的超速车辆的号码比对,一旦号码相同即启动警示设备通知管理人员处理。与传统的超速监测方式相比,这种应用可以节省警力,降低管理人员的工作强度,而且安全、高效、隐蔽,司机需时刻提醒自己不能超速,极大地减少了因超速引发的事故。
工作原理

识别流程

车牌自动识别(起落杆系统)是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。[1] 

 

车辆检测

车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。

系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。

号码识别

为了进行车牌识别(起落杆系统),需要以下几个基本的步骤:

1) 牌照定位,定位图片中的牌照位置;

2) 牌照字符分割,把牌照中的字符分割出来;

3) 牌照字符识别,把分割好的字符进行识别,*终组成牌照号码。

车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。

1) 牌照定位

自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,*后选定一个*佳的区域作为牌照区域,并将其从图像中分离出来。

2) 牌照字符分割

完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部*小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。

3) 牌照字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择*佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。

实际应用中,潍坊昌乐县车牌识别系统(起落杆系统)的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像*利于识别。
产品相册

 

 

 

 

联系我们

联系人:张经理

点击查看联系方式

企业档案

  • 会员类型:免费会员
  • 工商认证: 【未认证】
  • 最后认证时间:
  • 法人:
  • 注册号:
  • 企业类型:个体商户
  • 注册资金:人民币200万

script>
在线咨询

提交