产品展示
R900916161 德国力士乐REXROTH溢流阀
点击次数:21发布时间:2023/2/23 9:08:38
更新日期:2023/2/23 9:08:38
所 在 地:
产品型号:R900916161
优质供应
详细内容
德国力士乐REXROTH溢流阀
力士乐REXROTH溢流阀是-种液压压力控制阀。在液压设备中主要起定压溢流作用,稳压,统卸荷和安全保护作用。定压溢流作用:在定量泵节流调节系统中,定泵提供的是恒定流量。当系统压力增大时,会使流量需求减小。
力士乐溢流阀的特点:
先导阀和主阀的阀芯分别处于力平衡状态,其阀口满足压力-流量方程。阀门的入口压力是通过两次比较得到的,压力值主要由先导阀调压弹簧的预压缩量决定,主阀弹簧起复位作用。
通过先导阀的流量很小,是主阀额定流量的1%,所以它的尺寸很小,甚至高压阀的弹簧刚度也很小。这样,阀门的调节性能大大提高。
主阀芯的开启是基于液体流经阻力孔造成的压差。阻力孔一般为细长孔,孔径小0=0.8 ~ 1.2毫米,孔长I=8 ~ 12mm毫米,操作时容易堵塞。一旦堵塞,主阀口通常是打开的,不能调节。
德国REXROTH力士乐DBD系列溢流阀的注意事项
噪声和振动
液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。
(1)压力不均匀引起的噪声
先导型溢流阀的导阀部分是一个易振部位如所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。
由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。
(2)空穴产生的噪声
当由于各种原因,空气被吸入油液中,或者在油液压力低于大气压时,溶解在油液中的部分空气就会析出形成气泡,这些气泡在低压区时体积较大,当随油液流到高压区时,受到压缩,体积突然变小或气泡消失;反之,如在高压区时体积本来较小,而当流到低压区时,体积突然增大,油中气泡体积这种急速改变的现象。气泡体积的突然改变会产生噪声,又由于这一过程发生在瞬间,将引起局部液压冲击而产生振动。先导式溢流阀的导阀口和主阀口,油液流速和压力的变化很大,很容易出现空穴现象,由此而产生噪声和振动。
(3)液压冲击产生的噪声
先导式溢流阀在卸荷时,会因液压回路的压力急骤下降而发生压力冲击噪声。愈是高压大容量的工作条件,这种冲击噪声愈大,这是由于溢流阀的卸荷时间很短而产生液压冲击所致在卸荷时,由于油流速急剧变化,引起压力突变,造成压力波的冲击。压力波是一个小的冲击波,本身产生的噪声很小,但随油液传到系统中,如果同任何一个机械零件发生共振,就可能加大振动和增强噪声。所以在发生液压冲击噪声时,一般多伴有系统振 动。
(4)机械噪声
先导式溢流阀发出的机械噪声,一般来自零件的撞击和由于加工误差等产生的零件磨擦。
在先导型溢流阀发出的噪声中,有时会有机械性的高频振动声,一般称它为自激振动声。这是主阀和导阀因高频振动而发生的声音。它的发生率与回油管道的配置、流量、压力、油温(粘度)等因素有关。一般情况下,管道口径小、流量少、压力高、油液粘度低,自激振动发生率就高。
德国力士乐REXROTH溢流阀
力士乐REXROTH溢流阀液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。力士乐溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中力士乐溢流阀主要由阀中零件的撞击和磨擦等原因产生的噪声。力士乐溢流阀压力不均匀引起的噪声,力士乐溢流阀的导阀部分是一个易振部位。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。力士乐溢流阀过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。
力士乐REXROTH溢流阀锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。由于力士乐溢流阀有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以力士乐溢流阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。力士乐溢流阀空穴产生的噪声当由于各种原因,空气被吸入油液中,或者在油液压力低于大气压时,溶解在油液中的部分空气就会析出形成气泡,这些气泡在低压区时体积较大,当随油液流到高压区时,受到压缩,体积突然变小或气泡消失。