企业档案

  • 会员类型:免费会员
  • 工商认证: 【未认证】
  • 最后认证时间:
  • 法人:
  • 注册号:
  • 企业类型:经销商
  • 注册资金:人民币万

联系我们

联系人:金磊

点击查看联系方式

技术文章

红外光谱在珠宝玉石中的应用

点击次数:1233 发布时间:2008/10/23 22:27:41

 

1、红外光谱基本理论
    当一束红外光照射在矿物上时,矿物就要吸收一部分能量,同时将吸收的能量转变为分子振动能和分子转动能。 
    分子振动光谱:分子振动能级比分子转动能级大,当分子振动能级跃迁时伴随有分子转动能级跃迁。 
    分子转动光谱:出现在远红外区,它能给出分子的转动惯量、核间距离、分子的对称性。
    在近红外、中红外区光子激发分子振动能级的同时,也激发分子转动能级,但不能激发电子能级跃迁。
    当一束红外光照射在矿物上时,一种可能为矿物内部分子运动全部吸收,不再从矿物内部射出,另一种可能为红外光束强度大,部分能量被分子能级跃迁吸收,还有部分能量透过矿物。
    有关的名词解释:
    波长―二个相邻波峰(波谷)之间距离, 波长单位:微米(μ)。
    波数―单位长度波振动次数(波长倒数cm-1),波数单位:厘米-1(cm-1)。
    频率―每秒钟内振动次数(单位时间通过固定点波数)。
    透射比―入射矿物光强度(I0),透过矿物光强度(I),I / I0
    透过率―I / I0×100。
    红外吸收光谱图―不同频率的辐射于矿物上,导致不同透射比,以纵座标为透过率,横座标为频率,形成矿物变化曲线,则称该矿物红外吸收光谱图。
    近红外―波长范围:0.78―2.5μ,波数:12820―4000cm-1
    中红外―波长范围:2.5―50μ,波数:4000―200cm-1
    远红外―波长范围:50―1000μ,波数:200―10cm-1
    单位变换:(μ微米、μm毫微米、Å埃、cm厘米)
    1μ=1000nm=10000Å=10-4cm
    1Å=10-1nm=10-4μ=10-8cm
    1cm=104μ=107nm=108 Å
    1μm=10-7cm 
2、矿物红外光谱特征
    矿物红外光谱反映矿物化学成分、结构特征,矿物大多数属离子化合物,具各种阴离子团(硅酸盐、碳酸盐、硼酸盐、磷酸盐、硫酸盐、钨酸盐、钼酸盐、砷酸盐、钒酸盐、铬酸盐),振动强大、稳定。
    矿物红外光谱能较快测出各种阴离子团,以阴离子团再研究相关的阳离子成分及矿物成分结构。 
    具同一阴离子团矿物类,吸收频率、强度是一致的,因此利用矿物阴离子团及特征吸收频率,通过相应的研究能迅速测定矿物。 
    矿物阴离子团及特征吸收频率(cm-1
矿物阴离子团
特征吸收频率(cm-1
AsO43-
880―770
BO33-
1500―1300、950―850、700―400
BO45-
880―700、700―400
CO32-
1530―1320、100―1040、890―800、745―670
CrO42-
900―820
HCO32-
3300―2000、1930―1840、1700―1600、1000―940 840―830、710―690、670―640
H2O
3650―3000、1700―1590
MoO42-
850―780、700―200
NO3-
1810―1730、1520―1280、1060―1020、850―800、770―715
OH-
3700―2900
PO43-
1200―940、650―540
SiO44-
1175―860、540―470
SO42-
1210―1040、680―570
VO43-
930―730
U2O7
900―880、480―470、280―270
WO42-
850―780、720―200
    某些矿物特征吸收频率(cm-1
矿物名称
特征吸收频率(cm-1
萤石
275
方解石
721、873―881、1435―1410
白云石
729
菱铁矿
737
菱镁矿
748
菱锌矿
743
菱锰矿
727
白铅矿
1410、677
文石
1471、707、692
石英
512―515、778―780、796―800、1084―1085
微斜长石
1142、1134、1120、1100、768、742、728、648、602、584、535、463、428、398
高岭石
3704―3689、3672―3664、3653―3650、3628―3620、1100―1093、1038―1035、1012―1000、918―912、542―535、475―468
透闪石―铁阳起石
3625、3648、3660、3673
蒙脱石
620―630、 845―850、1080―1090
伊利石
822―845、1010―1025、1070―1080
钙铝榴石―钙铁榴石
550―650、800―1000
镁橄榄石―铁橄榄石
800―1000 
3、红外光谱在宝玉石检测中的应用
    宝玉石检测基本上是采用无损伤方式,随着宝玉石工艺的不断革新发展,人工优化改善充填技术日益提高。 
    在宝玉石检测中任何检测手段的应用,在某些方面都存在局限性,红外光谱也不例外。 
    红外光谱正常的矿物检测样品制备,先将矿物研磨成粉末状,再渗入白色粉末状溴化钾共同研磨,在压片机上压制成测试圆形薄片,然而宝玉石饰品不可能研磨制备,因而饰品需有一个以上或更多的抛光平面进行测试,也可能需要将饰品重新处理再进行测试,这就是红外光谱测试的局限性。 
    红外光谱运用于宝玉石检测,用其所长,能较快准确测定宝玉石中(OH)n、H2O、H3O、OH-及高分子材料(硅基聚合物、环氧树脂、塑料)确定宝玉石名称及优化处理内涵。 
    合成宝玉石虽与天然宝玉石在物理化学性质基本相同,但从某些微细方面也存在差异,这在红外光谱上有不同反应。 
    天然祖母绿与助熔剂合成祖母绿区别在于天然祖母绿在3400―3800cm-1有一强吸收峰,助熔剂合成祖母绿无3400―3800cm-1强吸收峰,这与天然祖母绿中含有一定结晶水(H2O)有关。 
    水热法合成祖母绿具2745、2830、2995、3490cm-1吸收峰,而在天然祖母绿中2745、2830、2995、3490cm-1吸收峰是不存在的。 
    红外光谱对聚合物充填类饰品具一定的优势,如天然翡翠经酸蚀后聚合物充填处理,在红外光谱图上反映出2827、2928、2942、2969cm-1吸收峰存在,系高分子材料充填所致,天然翡翠无2827、2928、2942、2969cm-1吸收峰。 
    天然绿松石中无2950cm-1吸收峰,注塑绿松石中具2950cm-1吸收峰。 
    天然欧泊中无5725、5810、5780、5810、5890、5925cm-1吸收峰,聚合物充填欧泊中具5725、5810、5780、5810、5890、5925cm-1吸收峰。 
    天然紫晶中无3540cm-1吸收峰,合成紫晶中具3540cm-1吸收峰。 

    矿物实例还很多不一一赘述,在宝玉石中的应用还在不断的开发,作为一种矿物的测试手段还在不断完善,红外光谱的应用将日趋发展,并有助于解决宝玉石检测中的难点、疑点。

原创作者:宁波市江东璟瑞仪器仪表有限公司

相关产品

script>