您好,欢迎来到易推广 请登录 免费注册

贝士德仪器科技(北京)有限公司 主营产品:比表面积仪,孔隙度测定仪,比表面积测试仪,孔径分析仪比表面积测定仪,比表面积分析仪

易推广认证请放心拨打

13810680835

当前位置:易推广>贝士德仪器科技(北京)有限公司>技术文章>微孔材料孔分析技术

技术文章

微孔材料孔分析技术

点击次数:6981 发布时间:2017/2/28 15:03:03

 

微孔材料的孔分析技术

 

 

固体多孔材料的孔分布是材料表征的重要物理参数。通过电镜等显微方法可以看到局部的孔形貌却不足以表征材料的整体性质,确认材料结构是否完整、均一。因此,人们依然需要一种宏观、整体的方法来对材料的孔结构进行表征。比表面和孔径分析仪器就是创造相应条件,实现复杂计算的这样一种仪器

与传统的比表面积测试不同,针对孔结构的计算必须考虑材料的固有性质,如表面极性、孔型(圆柱孔、狭缝孔、球状孔等)甚至孔与孔之间的连接方式等。目前计算孔分布的方法,如计算介孔分布常用的BJH法,计算微孔常用的HK法、SF法等,以及*新的基于密度函数理论(DFT)的计算方法。正确地计算材料的孔分布不仅要求实验的准确性,更要求选择正确的计算方法和模型。

 

 

1,气体吸附过程的静态描述

在进行气体吸附实验之前,固体表面必须清除污染物,如水、油及吸附在表面的各种其他分子。含有复杂孔道的微孔材料所吸附的污染物相对更难清除,只有借助分子泵提供的高真空度和相对长的脱气时间(一般大于12小时)才有可能将其彻底清洁。样品清洁后,转移至外置的恒温浴中,然后,将吸附质逐步定量进入被抽真空的样品管并测量。

物理吸附是一种可逆的弱吸附类型。被物理吸附的分子可以相当自由地在样品表面移动。吸附质分子趋向于优先填充材料表面吸附势能较高的部分——微孔,随着越来越多的气体分子被导入体系,吸附质分子会在整个吸附剂表面形成一个薄层。

继续增加气体分子的通入量会导致多层吸附。持续地多层吸附伴随着毛细管凝聚过程,即在在孔道中的被吸附气体随分压比增高转化为液体的过程。描述这一过程的经典方程是开尔文方程,该方程量化了平衡气体压力与可以凝聚气体的毛细管尺寸的比例。随着平衡吸附质压力趋于饱和,孔就被吸附质完全填充。

 

2,吸附质对实验的影响

77K下的N2是微孔和介孔分析*常用的吸附质,但同时N2吸附对微孔,特别是在超微孔范围(孔径< 7Å),的定量评估一般不能令人满意。因此,已经建议替代的分子探针为ArCO2。尽管N2ArCO2动力学直径类似(分别为0.360.340.331】),但是这三种吸附物质的吸附行为是完全不同的。由于没有四极矩作用,Ar不会与大多数表面功能团和暴露的离子发生特异性相互作用,因此在沸点温度(87.3K)的Ar吸附对于许多微孔系统(特别是分子筛socMOF等材料)可以给出更准确的孔径信息。以FAU分子筛为例,Ar可在较高的相对压力下(10-5

0<10-3填充0.5-1nm尺度的微孔(氮气填充需要在10-70<10-5范围),这导致扩散和平衡加速,在合理的时间内获得高分辨率吸附等温线

        对于273KCO2,由于受到CO2气体饱和蒸汽压、液化温度及三相点等物理性质的影响,CO2无法在介孔中发生毛细管凝聚过程,即无法对介孔孔径分布进行计算。但是对于小于1.5nm的微孔来说,得益于CO2分子较小的动力学直径,CO2是一种非常有用的分析探针。

 

 

结论

    静态气体吸附分析是一个分析过程,而不是一个测量过程。首先要根据样品性质选择正确的预处理和分析条件,以获得准确的实验数据。其次,针对孔结构的计算必须考虑材料的固有性质,如表面极性、孔型(圆柱孔、狭缝孔、球状孔等)甚至孔与孔之间的连接方式等。正确地计算材料的孔分布不仅要求实验的准确性,更要求对样品性质有清晰地认识,选择正确的计算方法和模型。

原创作者:贝士德仪器科技(北京)有限公司

相关产品

中国彩虹热线
在线咨询

提交