企业档案
会员类型:会员
已获得易推广信誉 等级评定
(0 -40)基础信誉积累,可浏览访问
(41-90)良好信誉积累,可接洽商谈
(91+ )优质信誉积累,可持续信赖
易推广会员:12年
最后认证时间:
注册号:**** 【已认证】
法人代表: 【已认证】
企业类型:生产商 【已认证】
注册资金:人民币万 【已认证】
产品数:836
参观次数:1191798
手机网站:http://m.yituig.com/c89826/
旗舰版地址:http://www.bsdst.com
技术文章
Langmuir 吸附等温方程
点击次数:5903 发布时间:2017/9/28 13:55:14
Langmuir 吸附等温方程――Langmuir 比表面
(1) Langmuir 理论模型
吸附剂的表面是均匀的,各吸附中心的能量相同;
吸附粒子间的相互作用可以忽略;
吸附粒子与空的吸附中心碰撞才有可能被吸附,一个吸附粒子只
占据一个吸附中心,吸附是单层的,定位的;
在一定条件下,吸附速率与脱附速率相等,达到吸附平衡。
(2) 等温方程
吸附速率:
ra∝(1-θ)P ra=ka(1-θ)P
脱附速率rd∝θ rd=kdθ
达到吸附平衡时:ka(1-θ)P=kdθ
其中,θ=Va/Vm(Va―气体吸附质的吸附量;Vm--单分子层饱和吸附容量,mol/g),为吸附剂表面被气体分子覆盖的分数,即覆盖度。
设B= ka/kd ,则:θ= Va/Vm=BP/(1+BP),
整理可得:
P/V = P/ Vm+ 1/BVm
以P/V~P作图,为一直线,根据斜率和截距,可以求出B和Vm值(斜率的倒数为Vm),因此吸附剂具有的比表面积为:
Sg=Vm·A·σm
A— Avogadro常数 (6.023x1023/mol)
σm— 一个吸附质分子截面积(N2为 16.2x10-20m2),即每个氮气分子在吸附剂表面上所占面积。
本公式应用于:含纯微孔的物质;化学吸附。
原创作者:北京贝士德分析仪器研究院