产品展示
植物光合荧光呼吸生理测定系统
点击次数:1915发布时间:2018/4/21 16:41:20
更新日期:2024/11/13 12:27:23
所 在 地:中国大陆
产品型号:
优质供应
详细内容
主要功能:
CIRAS-HPEA植物光合荧光呼吸生理测定系统主要用于从事植物叶片光合作用、蒸腾作用、呼吸作用、叶绿素荧光、土壤呼吸、果实呼吸、群体光合、OJIP等相关研究。研究植物光合机构的光化学活性、光能的吸收和转化效率等。研究植物在不同环境下的光合效率、筛选高光效植物品种、植物抗逆性、转基因植物功能分析。还可应用于遗传育种、除草剂功能、病虫害防治及污染监测等.
1. 同步测量叶绿素荧光与气体交换
2. 同步测量叶绿素荧光与气体交换的暗-光诱导曲线
3. 同步测量叶绿素荧光与气体交换的光响应曲线和CO2响应曲线
4. 典型的气体交换测量,如光合作用、蒸腾作用、呼吸作用
5. 典型的叶绿素荧光测量,如诱导曲线、快速光曲线、淬灭分析、暗驰豫等
6. 完整的OJIP曲线测量
7. 叶绿素荧光与OJIP的快速诱导动力学等
8. 编程进行复杂的同步或独立测量
系统组成
应用范围:
植物生理学、植物生态学、农学、园艺学、林学、环境科学、植物病理学、藻类生物学等领域。
测量参数:
1. CIRAS-HPEA植物光合荧光呼吸生理测定系统主机测定参数
参数 | 中文名称 | 英文名称 | 单位 |
直接测定参数 | |||
Pn | 净光合速率 | Assimilation Rate | |
E | 蒸腾速率 | Transportation Rate | m mol m-2 s-1 |
Gs | 气孔导度 | Stomatal Conductance | m mol m-2 s-1 |
Ci | 细胞间隙CO2浓度 | Internal CO2 Concentration | ppm或μmol mol-1 |
VPD | 水蒸汽压亏缺 | Vapour Pressure Deficit | mb |
Rd | 暗呼吸速率 | Respiration Rate | μmol m-2 s-1 |
测定环境参数 | |||
Cr | 大气CO2浓度 | Air CO2 Concentration | ppm或μmol mol-1 |
Cd | CO2落差 | Differential CO2 | ppm |
Hr | 大气湿度 | Air Humidity | mb |
Hd | 湿度落差 | Differential H2O | mb |
RH | 相对湿度 | Relative Humidity | % |
Tl | 叶片温度 | Leaf Temp | ℃ |
Tc | 叶室温度 | Cuvette Air Temp | ℃ |
Ap | 大气压 | Atmospheric Pressure | 百帕 |
Q | 光合有效辐射 | PAR Photosynthetically Active Radiation | μmol m-2 s-1 |
Vm | 叶室流量 | Chamber Flow Rate | ml min-1 |
可计算参数 | |||
CE | 羧化效率 | Carboxylation Efficiency | % |
AQY | 表观量子效率 | Apparent Quantum Yield | % |
Rp | 光呼吸 | Rate of Photorespiraton | μmol m-2 s-1 |
Isat | 饱和光强 | Light Satuation intensity | μmol m-2 s-1 |
Ic | 光补偿点 | Light Compensation Point | μmol m-2 s-1 |
Γ | CO2补偿点 | CO2 Compensation Point | ppm或μmol mol-1 |
Cisat | 饱和CO2浓度 | Caturation Ci Concentration | ppm或μmol mol-1 |
2.植物效率仪模块测定参数
FO,Fm,Fv,Fv/Fm,Ft,FJ,FI,FP,Tm, ψO,φEo,φDo,Vt,VJ,WK,PIABS,PICS,ABS/RC,TRO/RC,ETO/RC,DIO/RC,RC/CSO,RC/CSM等五十多个叶绿素荧光参数。准确记录叶绿素荧光诱导动力学曲线的快相部分,每秒钟可以连续记录10万次荧光踪迹数据,在1秒钟内完整测定叶绿素的OJIP荧光诱导动力学曲线。
技术指标
1.主机指标:
l 内置四个独立的高精度非分散的红外线CO2/H2O分析仪,分别测定参比和分析气路中CO2和H2O气浓度,分析仪可用于开放式或密闭式测定。
l CO2测定范围0-10000μmol mol-1
l CO2精度: 300μmol mol-1时为0.2μmol mol-1
l 1750μmol mol-1时为0.5μmol mol-1
l 10000μmol mol-1时为3μmol mol-1
l CO2控制范围:0-2000μmol mol-1
l H2O测定范围:0-75mb
l H2O精度:0mb时为0.015mb
l 10mb时为0.020mb
l 50mb时为0.030mb
l 5 H2O控制范围:0-露点
l 数据存储:无限存储
l 仪器显示:10.2” VGA半透射式LCD屏液晶显示器,在强光下更容易看清
l 叶室结构: 铝合金叶室手柄;安装红外过滤玻璃的叶室窗口;不锈钢泵轮
l LCD显示:手柄上2行×16字符LCD显示器,显示测定的数据
l 自动控温:可以在大气温度上下10℃内控制,控温范围:5-45℃
l 气温探头:热敏电阻,测定精度±0.5℃
l 叶温探头:辐射探头非接触测定,测定精度±0.5℃
l 内置PAR探头:测定范围0-3000μmol m-2 s-1,积分400-700nm的光,分辨率为1μmol m-2 s-1
l 外置PAR探头:测定范围0-3000μmol m-2 s-1,积分400-700nm的光,分辨率为1μmol m-2 s-1
红、蓝、绿、白四色LED光源:自动控光范围:0-2500μmol m-2 s-1
l 红光波峰625nm+/-5nm,半峰宽15nm
l 绿光波峰528nm+/-8nm 半峰宽40nm
l 蓝光波峰475nm+/-10nm 半峰宽28nm
l 白光波长425-650nm
l 调制光束:625nm+/-5nm (红)
l 饱和光:0-100000-3000μmol m-2 s-1
l 远红光:2×750nm LED
2.植物效率仪模块技术指标:
l 存储8000个以上的测定参数、存储1000个荧光动力学曲线全数据
l 红色二极管聚光光源,波长峰在650 nm,谱线半宽22 nm,叶片表面光强度>3000µmol m-2s-1,光强在0~100%范围之间有100个选择档次
l 自行设置记录时间,从1~120秒有120个选择档次
l 功能强大的数据传输及分析软件,并可根据研究需要预设各种测定程序
l 可测定宽叶、窄叶、针叶、藻类、地衣、苔藓及叶绿体的荧光
l 可选配新型的液体样品探头,与主机联用可使灵敏度扩大100倍,适用于测定浓度较稀的藻类样品或叶绿体悬浮液的荧光
l 镍氢充电电池,电池使用时间长达8小时
l 体积:175×80×40mm
l 重量:0.65Kg
产地:美国PP SYSTEMS公司
参考文献
Uehlein N, Otto B, Hanson DT, etc. Function of Nicotiana tabacum Aquaporins as Chloroplast Gas Pores Challenges the Concept of Membrane CO2 Permeability. Plant Cell, 2008, 20: 648–657 CIRAS-2
Galvez-Valdivieso G, Fryer MJ, Lawson T, etc. The High Light Response in Arabidopsis Involves ABA Signaling between Vascular and Bundle Sheath Cells. Plant Cell, 2009, 21: 2143-2162 CIRAS-2
Eastmond PJ, Quettier AL, Kroon JTM, etc. PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 and 2 Regulate Phospholipid Synthesis at the Endoplasmic Reticulum in Arabidopsis. Plant Cell, 2010, 22: 2796-2811
Bauerle WL, Oren R, Way DA, etc. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. PNAS, 2012, 109(22):8612-8617 CIRAS-2
Ravet K, Touraine B, Boucherez J, etc. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. The Plant Journal, 2009, 57: 400-412
Jiang CD, Wang xin, Gao HY. Systemic Regulation of Leaf Anatomical Structure, Photosynthetic Performance, and High-Light Tolerance in Sorghum. Plant Physiology,2011, 155: 1416-1424
Pantin F, Simonneau T, Rolland G,etc. Control of Leaf Expansion: A Developmental Switch from Metabolics to Hydraulics. Plant Physiology, 2011 156:803-815 CIRAS-2
Fu QS, Cheng LL, Guo YD, etc. Phloem Loading Strategies and Water Relations in Trees and Herbaceous Plants. Plant Physiology, 2011 157: 1518-1527 CIRAS-1
Trotta A, Wrzaczek M, Scharte J, etc. Regulatory Subunit B′γ of Protein Phosphatase 2A Prevents Unnecessary Defense Reactions under Low Light in Arabidopsis. Plant Physiology, 2011, 156:1464-1480. CIRAS-1
Subramanyam K, Arun M, Mariashibu TS, etc. Overexpression of tobacco osmotin (Tbosm) in soybean conferred resistance to salinity stress and fungal infections. Planta, 2012, 236(6): 1909-1925 CIRAS-1
Wang HC, Ma FF, Cheng LL, etc. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of ‘Honeycrisp’ apple (Malus domestica Borkh) with excessive accumulation of carbohydrates. Planta, 2010, 232(2):511-522
Massot C, Stevens R, Genard M, etc. Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Planta, 2012, 235(1):153-163
Coopman RE,Briceño VF, Corcuera LJ, etc. Tree size and light availability increase photochemical instead of non-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest. Tree Physiology, 2011, 31(10): 1128-1141 CIRAS-2
Diego ND, Pérez-Alfocea F, Cantero E, etc. Physiological response to drought in radiata pine: phytohormone implication at leaf level. Tree Physiology, 2012, 32(4): 435-499 CIRAS-2
Papers R, Bresson CC, Vitasse Y, etc. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology, 2011, 31(11):1164-1174 CIRAS-2
Aasamaa K, Sõbe A. Responses of stomatal conductance to simultaneous changes in two environmental factors Tree Physiology, 2011, 31(8): 855-864 CIRAS-1
Liu TW, Wu FH, Wang WH, etc. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology, 2011, 31(4):402-413 CIRAS-2
Larchevêque M, Maurel M, Desrochers A, etc. How does drought tolerance compare between two improved hybrids of balsam poplar and an unimproved native species?. Tree Physiology, 2011, 31(3): 240-249 CIRAS-2:
Arve LE, Terfa MT, Gislerod HR, etc. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant, Cell&Environment, 2012 CIRAS
Wuyts N, Massonnet C, Dauzat M, etc. Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3D approach. Plant, Cell&Environment, 2012, 35(9): 1631-1646 CIRAS
Prieto JA, Louarn G, Pena JP, etc. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.). Plant, Cell&Environment, 2012, 35(7):1313-1328 CIRAS
Javier J, Flexas J, Galmes J, etc. Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant, Cell&Environment, 2012, 35(12): 2121-2129 CIRAS
Vickers CE, Possell M, Laothawornkitkul J, etc. Isoprene synthesis in plants: lessons from a transgenic tobacco model. Plant, Cell&Environment, 2011, 34(6): 1043-1053 CIRAS
Driever SM, Baker NR. The water–water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. Plant, Cell&Environment, 2011, 34(5): 837-846 CIRAS
Wargent JJ, Elfadly EM, Moore JP, etc. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa. Plant, Cell&Environment, 2011, 34(8): 1401-1413 CIRAS
Pavlovic A, Ludmila L, Santrucek J. Nutritional benefit from leaf litter utilization in the pitcher plant Nepenthes ampullaria. Plant, Cell&Environment, 2011, 34(11): 1865-1873 CIRAS
Vasseur F, Pantin F, Vile D. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant, Cell&Environment, 2011, 34(9): 1563-1576 CIRAS
Einhorn TC, Turner J, Laraway D. Effect of Reflective Fabric on Yield of Mature ‘d’Anjou’ Pear Trees. Hortscience, 2012, 47:1580-1585 CIRAS-2
Astacio MG,van Iersel MW. Concentrated Exogenous Abscisic Acid Drenches Reduce Root Hydraulic Conductance and Cause Wilting in Tomato. Hortscience, 2012, 46: 1640-1645 CIRAS-2
Astacio MG,van Iersel MW. Determining the Effects of Abscisic Acid Drenches on Evapotranspiration and Leaf Gas Exchange of Tomato. Hortscience, 2012, 46: 1512-1517 CIRAS-2
Niu G, Rodriguez D, Gu MM. Fertilization, and Irrigation: Response of Sophora secundiflora to Nitrogen Form and Rate. Hortscience, 2011, 46: 1303-1307 CIRAS-2
Ding M, Bie B, Jiang W, Hunag DF. Physiological Advantages of Grafted Watermelon (Citrullus lanatus) Seedlings under Low-temperature Storage in Darkness. Hortscience, 2011, 46: 993-996 CIRAS-2
Miralles-Crespo J, Martínez-López JA, Franco-Leemhuis J, etc. Determining Freezing Injury from Changes in Chlorophyll Fluorescence in Potted Oleander Plants. Hortscience, 2011, 46: 895-900 CIRAS-2
Pennisi SV, van Iersel MW. Quantification of Carbon Assimilation of Plants in Simulated and In Situ Interiorscapes. Hortscience, 2012, 47: 468-476 CIRAS-2
Salvatori, E, Fusaro L, Mereu S, etc. Different O3 response of sensitive and resistant snap bean genotypes (Phaseolus vulgaris L.): The key role of growth stage, stomatal conductance, and PSI activity. Environmental and Experimental Botany, 2013, 87: 79-91 CIRAS-2
Signarbieux C, Feller U. Non-stomatal limitations of photosynthesis in grassland species under artificial drought in the field. Environmental and Experimental Botany, 2011, 71(2): 192-197 CIRAS-2
Orsini F, Alnayef M, Bona S, etc. Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environmental and Experimental Botany, 2012, 81: 1-10
Jensen AM, Gardiner ES, Vaughn KC. High-light acclimation in Quercus robur L. seedlings upon over-topping a shaded environment. Environmental and Experimental Botany, 2012, 78: 25-32
Pellegrini E, Carucci MG, Campanella A, etc. Ozone stress in Melissa officinalis plants assessed by photosynthetic function. Environmental and Experimental Botany, 2011, 73: 94-101
Mereu S, Gerosa G, Marzuoli R, etc. Gas exchange and JIP-test parameters of two Mediterranean maquis species are affected by sea spray and ozone interaction. Environmental and Experimental Botany, 2011, 73: 80-88
Aasamaa K, Sõber A. Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. Environmental and Experimental Botany, 2011, 71: 72-78
Pellegrini E, Francini A, Lorenzini G, etc. PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environmental and Experimental Botany, 2011, 70: 217-226
Alameda D, Villar R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environmental and Experimental Botany, 2012, 79: 49-57
Jensen AM, Löf M, Gardiner ES. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L. seedlings. Environmental and Experimental Botany, 2011, 71(3):367-375
Strauss AJ, van Heerden PDR. Effects on both the roots and shoots of soybean during dark chilling determine the nature and extent of photosynthesis inhibition. Environmental and Experimental Botany, 2011, 74: 261-271
Bunce JA, Nasyrov M. A new method of applying a controlled soil water stress, and its effect on the growth of cotton and soybean seedlings at ambient and elevated carbon dioxide. Environmental and Experimental Botany, 2012, 77: 165-169
Lobos GA, Retamales JB, Hancock JF, etc. Spectral irradiance, gas exchange characteristics and leaf traits of Vaccinium corymbosum L. ‘Elliott’ grown under photo-selective nets. Environmental and Experimental Botany, 2012, 75: 142-149
Azzarello E, Pandolfi C, Giordano C, etc. Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environmental and Experimental Botany, 2012, 81: 11-17
Jiang W, Ding M, Huang DF, etc. Exogenous glucose preserves the quality of watermelon (Citrullus lanatus) plug seedlings for low-temperature storage. Scientia Horticulturae, 2012, 148: 23-29 FMS-2 CIRAS-2
张子山,李耕,高辉远等. 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化, 作物学报, 2013,39(1):93-100
霍捷, 王俊玲, 高志奎.亚硫酸氢钠对白菜叶片硝酸盐还原及光合能力的影响. 园艺学报, 2012, 39(4): 669-676
邱念伟, 周峰, 王兴安. 5种松属树种光合功能及叶绿素快相荧光动力学特征比较. 应用生态学报, 2012, 23(5): 1181-1187
罗蕊, 张杰, 姬谦龙. 梨果实源营养液的制备及其对梨树叶片光合特性和果实品质的影响, 中国农业科学, 2012, 45(16): 3337-3345
李涛, 刘玉军, 姜闯道. 栽培密度对薄荷生长策略和光合特性的影响. 植物生理学报, 2012, 48(9): 895-900