您的位置:首页 > 产品展厅 > 高级研究型藻类荧光仪XE-PAM
技术参数: 灵敏度:0.5 μg Chl/L 测量光频率:2,4,8,16,32,64Hz 光化光频率:64Hz 饱和光频率:64Hz 饱和光闪光间隔:1ms~10s 饱和光最大光强:>8000 μmol·m-2·s-1 定时:1s~8h 适用温度:<0℃~>40℃ 电源:115/230V,50/60Hz,0.64/0.32A 电压浮动范围:士10 |
部分文献
1. 韩志国, 雷腊梅, 韩博平, 2006. 角毛藻光合作用对连续强光照射的动态响应. 热带亚热带植物学报 14: 7-13.
2. Topchiy NM, Sytnik SK, Syvash OO, Zolotareva OK, 2005. The effect of additional red irradiation on the photosynthetic apparatus of Pisum sativum Photosynthetica 43: 451-456.
3. MacKenzie TDB, Johnson JM, Cockshutt AM, Burns RA, Campbell DA, 2005. Large reallocations of carbon, nitrogen, and photosynthetic reductant among phycobilisomes, photosystems, and Rubisco during light acclimation in Synechococcus elongatus strain PCC7942 are constrained in cells under low environmental inorganic carbon. Archives of Microbiology 183: 190-202.
4. MacKenzie TDB, Campbell DA, 2005. Cyanobacterial acclimation to rapidly fluotuating light is constrained by inorganic carbon status. Journal of Phycology 41: 801-811.
5. Kolb CA, Schreiber U, Gademann R, Pfundel EE, 2005. UV-A screening in plants determined using a new portable fluorimeter Photosynthetica 43: 371-377.
6. Bruyant F, Babin M, Genty B, Prasil O, Behrenfeld MJ, Claustre H, Bricaud A, Garczarek L, Holtzendorff J, Koblizek M, Dousova H, Partensky F, 2005. Diel variations in the photosynthetic parameters of Prochlorococcus strain PCC 9511: Combined effects of light and cell cycle. Limnology and Oceanography 50: 850-863.
7. Bélanger M-C, Viau AA, Samson G, Chamberland M, 2005. Determination of a multivariate indicator of nitrogen imbalance (MINI) in potato using reflectance and fluorescence spectroscopy. Agronomy Journal 97: 1515-1523.
8. Villareal TA, 2004. Single-cell pulse amplitude modulation fluorescence measurements of the giant diatom Ethmodiscus (Bacillariophyceae). Journal of Phycology 40: 1052-1061.
9. Ryu J-Y, Song JY, Lee JM, Jeong SW, Chow WS, Choi S-B, Pogson BJ, Park Y-I, 2004. Glucose-induced expression of carotenoid biosynthesis genes in the dark Is mediated by cytosolic pH in the cyanobacterium Synechocystis sp. PCC 6803. The Journal of Biological Chemistry 279: 25320-25325.
10. Regel RH, Brookes JD, Ganf GG, 2004. Vertical migration, entrainment and photosynthesis of the freshwater dinoflagellate Peridinium cinctum in a shallow urban lake Journal of Plankton Research 26: 143-157.
11. Nybakken L, Bilger W, Johanson U, Björn LO, Zielke M, Solheim B, 2004. Epidermal UV-screening in vascular plants from Svalbard (Norwegian Arctic). Polar Biology 27: 383-390.
12. Mock T, Valentin K, 2004. Photosynthesis and cold acclimation: molecular evidence from a polar diatom. Journal of Phycology 40: 732-741.
13. MacKenzie TDB, Burns RA, Campbell DA, 2004. Carbon status constrains light acclimation in the cyanobacterium Synechococcus elongatus. Plant Physiology 136: 3301-3312.
14. Ryu J-Y, Suh K-H, Chung Y-H, Park Y-M, Chow WS, Park Y-I, 2003. Cytochrome c oxidase of the cyanobacterium Synechocystis sp. PCC 6803 protects photosynthesis from salt stress. Molecules and Cells 16: 74-77.
15. Davey MS, Suggett DJ, Geider RJ, Taylor AR, 2003. Phytoplankton plasma membrane redox activity: effect of iron limitation and interaction with photosynthesis. Journal of Phycology 39: 1132-1144.
16. Rodriguez M, Jr, Sanders CA, Greenbaum E, 2002. Biosensors for rapid monitoring of primary-source drinking water using naturally occurring photosynthesis. Biosensors and Bioelectronics 17: 843-849.
17. Miyake C, Yonekura K, Kobayashi Y, Yokota A, 2002. Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves Plant Cell and Physiology 43: 951-957.
18. Jeong SW, Choi SM, Lee DS, Ahn SN, Hur Y, Chow WS, Park Y-I, 2002. Differential susceptibility of photosynthesis to light-chilling stress in rice (Oryza sativa L.) depends on the capacity for photochemical dissipation of light. Molecules and Cells 13: 419-428.
19. Gervais F, Riebesell U, Gorbunov MY, 2002. Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnology and Oceanography 47: 1324-1335.
20. Markstädter C, Queck I, Baumeister J, Riederer M, Schreiber U, Bilger W, 2001. Epidermal transmittance of leaves of Vicia faba for UV radiation as determined by two different methods. Photosynthesis Research 67: 17-25.
21. Kolb CA, Käser MA, Kopecký J, Zotz G, Riederer M, Pfündel EE, 2001. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthsis in grape leaves. Plant Physiology 127: 863-875.
22. Bilger W, Johnsen T, Schreiber U, 2001. UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. Journal of Experimental Botany 52: 2007-2014.
23. Burchard P, Bilger W, Weissenbock G, 2000. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell and Environment 23: 1373-1380.
24. Brookes JD, Ganf GG, Oliver RL, 2000. Heterogeneity of cyanobacterial gas-vesicle volume and metabolic activity Journal of Plankton Research 22: 1579-1589.
25. Barnes PW, Searles PS, Ballaré CL, Ryel RJ, Caldwell MM, 2000. Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies. Physiologia Plantarum 109: 274-283.
26. Ivanov B, Kobayashi Y, Bukhov NG, Heber U, 1998. Photosystem I-dependent cyclic electron flow in intact spinach chloroplasts: Occurrence, dependence on redox conditions and electron acceptors and inhibition by antimycin A. Photosynthesis Research 57: 61-70.
27. Geel C, Versluis W, Snel JFH, 1997. Estimation of oxygen evolution by marine phytoplankton from measurement of the efficiency of Photosystem II electron flow. Photosynthesis Research 51: 61-70.
28. Bilger W, Veit M, Schreiber L, Schreiber U, 1997. Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiologia Plantarum 101: 754-763.
29. Schreiber U, Neubauer C, Schliwa U, 1993. PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: A highly sensitive new tool in basic and applied photosynthesis research. Photosynthesis Research 36: 65-72.
泽泉科技有限公司是一家致力于引进欧美高科技产品并提供系统解决方案的高科技公司。泽泉科技不仅向用户提供仪器设备的选型、采购、安装调试、技术培训和售后支持等服务,还向用户提供系统解决方案及集成服务。 公司由陆地环境部、水环境部和系统集成部组成。陆地环境部主要提供植物、土壤、气象和环境领域需要的仪器,并提供气象监测、节水灌溉、生态监测站等项目的系统解决方案;水环境部主要提供海洋和淡水研究中需要的仪器,并提供近岸、水上(浮标型)和移动型(水下机器人)监测/预警系统的系统解决方案;系统集成部主要为专业用户提供定制个性化服务。 |
迄今,我们已经与30多家国际著名生态,植物仪器研发制造商达成了代理协议,负责其产品在中国大陆和香港地区的技术销售和售后服务,逐步形成了SPAC土壤-植物-大气循环体全系列的产品结构,方便了国内专业用户的实验需求。针对德国WALZ公司PAM系列产品,围绕PAM脉冲-振幅-调制荧光技术在植物光合作用研究领域的应用,我们建立了“德国WALZ公司中国技术服务中心”,每月定期在全国范围内举办实验培训班,提供国内外最新的文献支持和交流,在国内也得到了广大用户的大力支持和认可。 |
公司成立于2000年,总部位于上海,并在北京和成都设有分部。公司员工全部具有本科以上学历,其中技术人员均具有博士或硕士学历。同时依托各地合作伙伴将业务领域扩展到全国。取得以上成绩的原因,就在于泽泉科技不仅向中国生命科学研究与应用领域提供品质良好的仪器,并且在售前售后提供了一系列增值服务和强有力的技术支持。泽泉的团队由几十位具有生化、生理、生态、农学、海洋学、环境保护等行业技术背景及市场经验,又熟悉产品特性与应用的专业人士组成,具有丰富的生态仪器领域技术服务经验。与此同时,我们为了更好的提供专业服务,我们与国内诸多权威研究机构建立了合作实验室,其中包括:“中科院植物所生态联合实验室”,“北京林业大学植物生态联合实验室”,“中科院地理所土壤重金属污染调查联合实验室”,“新疆生态地理所植物生态联合实验室”等多个技术支撑单位。 |
专业的精神,积极的态度,诚信的商业原则是泽泉科技有限公司全体同仁对广大用户的承诺。今天,泽泉正携手众多国际一流厂商,为我们的广大客户提供更多、更优秀的产品和一流的服务! |
① 凡本网注明"来源:易推广"的所有作品,版权均属于易推广,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内
使用,并注明"来源:易推广"。违者本网将追究相关法律责任。② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此 类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用 ,必须保留本网注明的"稿件来源",并自负版权等法律责任。
③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。
④易推广页面显示产品信息均由企业自主发布,信息内容真实性、准确性与合法性由相关企业负责,易推广对此不承担任何责任,如遇非法或侵权信息欢迎监督,请联系QQ:1273397930或者发邮件至:1273397930@qq.com,如有确实证件证明属实,本站将对其删除处理,谢谢!
⑤ 本信息由注册会员:上海泽泉科技有限公司发布并且负责版权等法律责任。
易推广客服微信